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Transition-metal alcoholates have been widely explored in
organic and inorganic chemistry, since they have the interesting
reactivity and structural diversity.1 In sharp contrast to stability
of early transition-metal alcoholates, late transition-metal ones
are labile due to weak M-O bond.2b Thus, the late transition-
metal alcoholates, although they lack M-C bonds, show certain
similarities to alkyls and are prone toâ-hydrogen elimination to
give a carbonyl compound and a reduced metal as shown in
Scheme 1.2 On the other hand, the examples of dealkylation
reactions oftert-alcoholates viaâ-carbon elimination catalyzed
by the late transition metal (Scheme 2) similar toâ-hydrogen
elimination are still few in number.3

Recently, we have succeeded in the aerobic oxidation of
primary andsecondaryalcohols to aldehydes and ketones in the
Pd(OAc)2/pyridine/MS3A catalyst system.4 This dehydrogenative
reaction proceeds via a palladium alcoholate and catalytically on
palladium under oxygen atmosphere. Thus, we undertook the
reaction of tert-alcohols. Cyclictert-cyclobutanol could merit
being used to pursue theâ-carbon elimination without the loss
of the carbon atom because it was expected to favorâ-carbon
elimination at the endo-carbon by relief of the ring strain.5,6 Now
we wish to report the novel palladium-catalyzed reaction of several
tert-cyclobutanols involving selectiveâ-carbon elimination (bond
a breaking) from the palladium alcoholate under the aerobic
conditions (Scheme 3).

Ring expansion reaction of 1-alkenyl or 1-alkynyl cyclobutanols
is a well-investigated reaction that can be promoted or catalyzed
by a divalent palladium.7 This reaction is suggested by the required
formation of palladium alkene or alkyneπ-complex prior to
migration of a secondary carbon (Scheme 4). Our approach to

find a different bond-cleavage reaction is performed by the
application of the recently discovered aerobic conditions employ-
ing Pd(II) (vide supra)4 to tert-cyclobutanols. Treatment of
7-vinylbicyclo[4.2.0]octan-7-ol8 (1a) (0.5 mmol) in toluene at 80
°C for 20 h with 10 mol % Pd(OAc)2, pyridine (1.0 mmol) and
MS3A (50 mg) under oxygen atmosphere afforded 1-(2-methyl-
enecyclohexan-1-yl)-2-propen-1-one (2a) in 56% isolated yield
as a dehydrogenative ring opening product (eq 1). This result

suggested that our reaction condition favored the cleavage of C-C
bond of cyclobutanol giving a less hindered primary alkylpalla-
dium intermediate (bonda breaking). The amount of pyridine
used was crucial to obtain the product2a selectively. Reducing
the amount of pyridine to 0.2 mmol, the yield of2a decreased
(30%).9 Next, the reaction of 7-phenylbicyclo[4.2.0]octan-7-ol
(1b) under the same conditions for 48 h afforded 2-methylenecy-
clohexan-1-yl phenyl ketone (2b) in 60% isolated yield. Interest-
ingly, the addition of a catalytic amount of ethyl acrylate (0.2
mmol) dramatically increased the yield of2b up to 97% isolated
yield.10 These successful reaction conditions could be applied to
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the reaction of alkyl-substituted bicyclic cyclobutanol1c leading
to â,γ-unsaturated ketone 1-(2-methylenecyclohexan-1-yl)pentan-
1-one (2c) in 71% yield. This means that the formation of
palladium alcoholate is a crucial step and the pre-coordination
of π-bond with palladium is not required prior to C-C bond
cleavage. Other examples of the selective C-C bond cleavage
of cyclobutanols are listed in Table 1. Several bicyclic cyclobu-
tanols3, 5, and 7 produced the correspondingâ,γ-unsaturated
ketones4, 6, and 8 in good to high yields (entries 1-3).
Cyclobutanol9 yieldedR,â-unsaturated ketone10 (81%) isomer-
ized from the initially formedâ,γ-unsaturated ketone (entry 4).
The reaction of monocyclic cyclobutanol11 was relatively slow,
but R,â-unsaturated ketone12 was obtained in moderate yield
(entry 5).

The reaction could also be applied to bicyclic cyclobutanols
13a-c having an angular substituent (eq 2). Cyclobutanols13a-c
afforded cyclopentanones14a-c in good yield. Each product was
apparently different from products obtained in the previous
palladium(II)-mediated reactions.7 These results show that an
alkylpalladium intermediate which is formed byâ-carbon elimi-
nation from palladium alcoholate undergoes cyclization in 5-exo
mode and subsequentâ-hydrogen elimination to give anR-

methylenecyclopentanone. In the case of substrate15 having
phenyl group instead of vinyl, the interesting reaction took place
to give ketone1611 in 91% yield (eq 3). The formation of16 can

be explained by assuming the reaction sequence shown in Scheme
5. An alkylpalladium intermediate byâ-carbon elimination
undergoes intramolecular endo cyclization with phenyl ring to
give trans-organopalladium complex17. This trans-complex
isomerizes via palladium enolate18 to cis-organopalladium
complex19, which affords the product16 via â-hydrogensyn-
elimination.

We suppose that these catalytic reactions proceed via the
formation of a Pd(II)-alcoholate species12 from alcohol and Pd-
(II)-pyridine complex13 followed byâ-carbon elimination giving
an alkylpalladium species. This alkylpalladium species is prone
to eliminate palladium withâ-hydride to giveâ,γ-unsaturated
ketones or cyclize with an alkenyl bond in the same molecule to
give cyclic ketones. The Pd(II)-hydride species produced at the
final stage can be converted again to active Pd(II) species by
molecular oxygen. The salient features of this catalytic behavior
deserves detailed study in this C-C bond cleavage reaction as
well as in the aerobic oxidation ofprimary and secondary
alcohols.
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(9) The byproduct, 7-methylenebicyclo[4.3.0]nonan-8-one (2a′) was also
obtained in 21% yield. The formation of2a′ might stem from bondb breaking
as indicated in Scheme 3 or palladium catalyzed rearrangement as shown in
Scheme 4.
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lographic analysis in our hands: see Supporting Information.
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Table 1. Pd(OAc)2 Catalyzed Reaction of Cyclobutanols*

* Reaction conditions: alcohol (0.5 mmol), Pd(OAc)2 (0.05 mmol),
pyridine (1.0 mmol), ethyl acrylate (0.2 mmol), MS3A (50 mg), toluene
(5 mL), at 80°C under atmospheric O2. a Isolated yield.b In the absence
of ethyl acrylate.
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